If |A|A = 22 and |B|B = 4,4, then match the relations in column-I with the angle θθ between AA and BB in column-II.     

Column-I Column-II
(A) |A×B|A×B =0=0  (p)  θ=30θ=30
(B)|A×B|A×B=8=8   (q) θ=45θ=45
(C) |A×B|A×B =4=4  (r)  θ=90θ=90
(D) |A×B|A×B =42=42 (s)  θ=0θ=0
1. A(s), B(r), C(q), D(p)
2. A(s), B(p), C(r), D(q)
3. A(s), B(p), C(q), D(r)
4. A(s), B(r), C(p), D(q)
 
Hint: Recall vector product.
Step 1: Use |A×B| = ABsinθ|A×B| = ABsinθ and calculate θθ in each part.

Given |A| = 2 and |B| = 4

 (a) |A×B|=ABsinθ=02×4×sinθ=0sinθ=0=sin0θ=0 Option (a) matches with option (iv). 

 (b) |A×B|=ABsinθ=82×4sinθ=8sinθ=1=sin90θ=90 Option (b) matches with option (iii). 

 (c) |A×B|=ABsinθ=42×4sinθ=4sinθ=12=sin30θ=30 Option (c) matches with option (i). 

 (d) |A×B|=ABsinθ=422×4sinθ=42sinθ=12=sin45θ=45 Option (d) matches with option (ii).