5.4 Classification of Colloids
NEETprep Audio Note:
(i) Physical state of dispersed phase and dispersion medium
(ii) Nature of interaction between dispersed phase and dispersion medium
(iii) Type of particles of the dispersed phase.
5.4.1 Classification Based on Physical State of Dispersed Phase and Dispersion Medium
Depending upon whether the dispersed phase and the dispersion medium are solids, liquids or gases, eight types of colloidal systems are possible. A gas mixed with another gas forms a homogeneous mixture and hence is not a colloidal system. The examples of the various types of colloids along with their typical names are listed in Table 5.4.
NEETprep Audio Note:
NEETprep Audio Note:
Out of the various types of colloids given in Table 5.4, the most common are sols (solids in liquids), gels (liquids in solids) and emulsions (liquids in liquids). However, in the present Unit, we shall take up discussion of the ‘sols’ and ‘emulsions’ only. Further, it may be mentioned that if the dispersion medium is water, the sol is called aquasol or hydrosol and if the dispersion medium is alcohol, it is called alcosol and so on.
5.4.2 Classification Based on Nature of Interaction between Dispersed Phase and Dispersion Medium
Depending upon the nature of interaction between the dispersed phase and the dispersion medium, colloidal sols are divided into two categories, namely, lyophilic (solvent attracting) and lyophobic (solvent repelling). If water is the dispersion medium, the terms used are hydrophilic and hydrophobic.
NEETprep Audio Note:
NEETprep Audio Note:
5.4.3 Classification Based on Type of Particles of the Dispersed Phase, Multimolecular, Macromolecular and Associated Colloids
Depending upon the type of the particles of the dispersed phase, colloids are classified as: multimolecular, macromolecular and associated colloids.
NEETprep Audio Note:
NEETprep Audio Note:
NEETprep Audio Note:
Mechanism of micelle formation

Fig. 5.5: Hydrophobic and hydrophilic parts of stearate ion
NEETprep Audio Note:
Fig. 5.6: (a) Arrangement of stearate ions on the surface of water at low concentrations of soap (b) Arrangement of stearate ions inside the bulk of water (ionic micelle) at critical micelle concentrations of soap
Cleansing action of soaps
NEETprep Audio Note:

Fig. 5.7: (a) Grease on cloth (b) Stearate ions arranging around the grease droplet and (c) Grease droplet surrounded by stearate ions (micelle formed)
5.4.4 Preparation of Colloids
A few important methods for the preparation of colloids are as follows:
(a) Chemical methods
NEETprep Audio Note:
As2O3 + 3H2S As2S3(sol) + 3H2O
SO2 + 2H2S 3S(sol) + 2H2O
2 AuCl3 + 3 HCHO + 3H2O 2Au(sol) + 3HCOOH + 6HCl
FeCl3 + 3H2O Fe(OH)3 (sol) + 3HCl
(b) Electrical disintegration or Bredig’s Arc method
NEETprep Audio Note:
Fig. 5.8: Bredig’s Arc method
(c) Peptization
NEETprep Audio Note:
During peptization, the precipitate adsorbs one of the ions of the electrolyte on its surface. This causes the development of positive or negative charge on precipitates, which ultimately break up into smaller particles of the size of a colloid. You will learn about the phenomenon of development of charge on solid particles and their dispersion in Section 5.4.6 under the heading “Charge on collodial particles”.
5.4.5 Purification of Colloidal Solutions
Colloidal solutions when prepared, generally contain excessive amount of electrolytes and some other soluble impurities. While the presence of traces of electrolyte is essential for the stability of the colloidal solution, larger quantities coagulate it. It is, therefore, necessary to reduce the concentration of these soluble impurities to a requisite minimum. The process used for reducing the amount of impurities to a requisite minimum is known as purification of colloidal solution. The purification of colloidal solution is carried out by the following mehods:
NEETprep Audio Note:
Fig. 5.9: Dialysis
NEETprep Audio Note:

Fig. 5.10: Electro-dialysis
NEETprep Audio Note:
5.4.6 Properties of Colloidal Solutions
Various properties exhibited by the colloidal solutions are described below:
NEETprep Audio Note:
NEETprep Audio Note:

Fig. 5.11: Tyndall effect
Tyndall effect can be observed during the projection of picture in the cinema hall due to scattering of light by dust and smoke particles present there. Tyndall effect is observed only when the following two conditions are satisfied.
(i) The diameter of the dispersed particles is not much smaller than the wavelength of the light used; and
(ii) The refractive indices of the dispersed phase and the dispersion medium differ greatly in magnitude.
NEETprep Audio Note:
NEETprep Audio Note:
NEETprep Audio Note:

Fig. 5.12: Brownian movement
The Brownian movement has been explained to be due to the unbalanced bombardment of the particles by the molecules of the dispersion medium. The Brownian movement has a stirring effect which does not permit the particles to settle and thus, is responsible for the stability of sols.
NEETprep Audio Note:
The presence of equal and similar charges on colloidal particles is largely responsible in providing stability to the colloidal solution, because the repulsive forces between charged particles having same charge prevent them from coalescing or aggregating when they come closer to one another.
NEETprep Audio Note:
The sol particles acquire positive or negative charge by preferential adsorption of positive or negative ions. When two or more ions are present in the dispersion medium, preferential adsorption of the ion common to the colloidal particle usually takes place. This can be explained by taking the following examples:
NEETprep Audio Note:
NEETprep Audio Note:
Having acquired a positive or a negative charge by selective adsorption on the surface of a colloidal particle as stated above, this layer attracts counter ions from the medium forming a second layer, as shown below.
NEETprep Audio Note:

Fig. 5.13: Formation of double layer
If two particles of an insoluble material (precipitate) do not have double layers they can come close enough and attractive van der Waals forces pull them together. When particles possess double layer as shown in Fig. 5.13, the overall effect is that particles repel each other at large distances of separation. This repulsion prevents their close approach. They remain dispersed and colloid is stabilised.
The addition of more electrolytes to sol supresses the diffused double layer and reduces the zita potential. This decreases the electrostatic repulsion between particles to a large extent and colloid precipitates. That is why colloid is particularly sensitive to oppositely charged ions.
NEETprep Audio Note:

Fig. 5.14: Electrophoresis
NEETprep Audio Note:
(vii) Coagulation or precipitation: The stability of the lyophobic sols is due to the presence of charge on colloidal particles. If, somehow, the charge is removed, the particles will come nearer to each other to form aggregates (or coagulate) and settle down under the force of gravity.
The process of settling of colloidal particles is called coagulation or precipitation of the sol.
NEETprep Audio Note:
(i) By electrophoresis: The colloidal particles move towards oppositely charged electrodes, get discharged and precipitated.
(ii) By mixing two oppositely charged sols: Oppositely charged sols when mixed in almost equal proportions, neutralise their charges and get partially or completely precipitated. Mixing of hydrated ferric oxide (+ve sol) and arsenious sulphide (–ve sol) bring them in the precipitated forms. This type of coagulation is called mutual coagulation.
(iii) By boiling: When a sol is boiled, the adsorbed layer is disturbed due to increased collisions with the molecules of dispersion medium. This reduces the charge on the particles and ultimately leads to settling down in the form of a precipitate.
(iv) By persistent dialysis: On prolonged dialysis, traces of the electrolyte present in the sol are removed almost completely and the colloids become unstable and ultimately coagulate.
(v) By addition of electrolytes: When excess of an electrolyte is added, the colloidal particles are precipitated. The reason is that colloids interact with ions carrying charge opposite to that present on themselves. This causes neutralisation leading to their coagulation. The ion responsible for neutralisation of charge on the particles is called the coagulating ion. A negative ion causes the precipitation of positively charged sol and vice versa.
NEETprep Audio Note:
Similarly, in the coagulation of a positive sol, the flocculating power is in the order: [Fe(CN)6]4– > PO43– > SO42– > Cl–
The minimum concentration of an electrolyte in millimoles per litre required to cause precipitation of a sol in two hours is called coagulating value. The smaller the quantity needed, the higher will be the coagulating power of an ion.
Coagulation of lyophilic sols
NEETprep Audio Note:
Protection of colloids
NEETprep Audio Note:
Lyophilic colloids have a unique property of protecting lyophobic colloids. When a lyophilic sol is added to the lyophobic sol, the lyophilic particles form a layer around lyophobic particles and thus protect the latter from electrolytes. Lyophilic colloids used for this purpose are called protective colloids.