2.8 Dimensions of physical quantities
NEETprep Audio Note:
The nature of a physical quantity is described by its dimensions. All the physical quantities represented by derived units can be expressed in terms of some combination of seven fundamental or base quantities. We shall call these base quantities as the seven dimensions of the physical world, which are denoted with square brackets [ ]. Thus, length has the dimension [L], mass [M], time [T], electric current [A], thermodynamic temperature [K], luminous intensity [cd], and amount of substance [mol]. The dimensions of a physical quantity are the powers (or exponents) to which the base quantities are raised to represent that quantity. Note that using the square brackets [ ] round a quantity means that we are dealing with ‘the dimensions of’ the quantity.
In mechanics, all the physical quantities can be written in terms of the dimensions [L], [M] and [T]. For example, the volume occupied by an object is expressed as the product of length, breadth and height, or three lengths. Hence the dimensions of volume are [L] × [L] × [L] = [L]3 = [L3]. As the volume is independent of mass and time, it is said to possess zero dimension in mass [M°], zero dimension in time [T°] and three dimensions in length.
Similarly, force, as the product of mass and acceleration, can be expressed as
Force = mass × acceleration
= mass × (length)/(time)2
The dimensions of force are [M] [L]/[T]2 = [M L T–2]. Thus, the force has one dimension in mass, one dimension in length, and –2 dimensions in time. The dimensions in all other base quantities are zero.
Note that in this type of representation, the magnitudes are not considered. It is the quality of the type of the physical quantity that enters. Thus, a change in velocity, initial velocity, average velocity, final velocity, and speed are all equivalent in this context. Since all these quantities can be expressed as length/time, their dimensions are [L]/[T] or [L T–1].